Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542455

RESUMO

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a growing health problem for which no therapy exists to date. The modulation of the gut microbiome may have treatment potential for MASLD. Here, we investigated Anaerobutyricum soehngenii, a butyrate-producing anaerobic bacterium with beneficial effects in metabolic syndrome, in a diet-induced MASLD mouse model. Male C57BL/6J mice received a Western-type high-fat diet and water with 15% fructose (WDF) to induce MASLD and were gavaged with A. soehngenii (108 or 109 colony-forming units (CFU) 3 times per week) or a placebo for 6 weeks. The A. soehngenii gavage increased the cecal butyrate concentrations. Although there was no effect on histological MASLD scores, A. soehngenii improved the glycemic response to insulin. In the liver, the WDF-associated altered expression of three genes relevant to the MASLD pathophysiology was reversed upon treatment with A. soehngenii: Lipin-1 (Lpin1), insulin-like growth factor binding protein 1 (Igfbp1) and Interleukin 1 Receptor Type 1 (Il1r1). A. soehngenii administration also increased the intestinal expression of gluconeogenesis and fructolysis genes. Although these effects did not translate into significant histological improvements in MASLD, these results provide a basis for combined gut microbial approaches to induce histological improvements in MASLD.


Assuntos
Clostridiales , Fígado Gorduroso , Doenças Metabólicas , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Composição de Bases , Gluconeogênese , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Butiratos , Expressão Gênica , Fosfatidato Fosfatase
2.
Nat Commun ; 14(1): 5600, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699894

RESUMO

Bacteriophages (phages) are bacterial viruses that have been shown to shape microbial communities. Previous studies have shown that faecal virome transplantation can decrease weight gain and normalize blood glucose tolerance in diet-induced obese mice. Therefore, we performed a double-blind, randomised, placebo-controlled pilot study in which 24 individuals with metabolic syndrome were randomised to a faecal filtrate transplantation (FFT) from a lean healthy donor (n = 12) or placebo (n = 12). The primary outcome, change in glucose metabolism, and secondary outcomes, safety and longitudinal changes within the intestinal bacteriome and phageome, were assessed from baseline up to 28 days. All 24 included subjects completed the study and are included in the analyses. While the overall changes in glucose metabolism are not significantly different between both groups, the FFT is well-tolerated and without any serious adverse events. The phage virion composition is significantly altered two days after FFT as compared to placebo, which coincides with more virulent phage-microbe interactions. In conclusion, we provide evidence that gut phages can be safely administered to transiently alter the gut microbiota of recipients.


Assuntos
Transplante de Microbiota Fecal , Síndrome Metabólica , Bacteriófagos , Glicemia , Método Duplo-Cego , Síndrome Metabólica/terapia , Humanos
3.
Nat Commun ; 13(1): 3594, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739117

RESUMO

There is significant interest in altering the course of cardiometabolic disease development via gut microbiomes. Nevertheless, the highly abundant phage members of the complex gut ecosystem -which impact gut bacteria- remain understudied. Here, we show gut virome changes associated with metabolic syndrome (MetS), a highly prevalent clinical condition preceding cardiometabolic disease, in 196 participants by combined sequencing of bulk whole genome and virus like particle communities. MetS gut viromes exhibit decreased richness and diversity. They are enriched in phages infecting Streptococcaceae and Bacteroidaceae and depleted in those infecting Bifidobacteriaceae. Differential abundance analysis identifies eighteen viral clusters (VCs) as significantly associated with either MetS or healthy viromes. Among these are a MetS-associated Roseburia VC that is related to healthy control-associated Faecalibacterium and Oscillibacter VCs. Further analysis of these VCs revealed the Candidatus Heliusviridae, a highly widespread gut phage lineage found in 90+% of participants. The identification of the temperate Ca. Heliusviridae provides a starting point to studies of phage effects on gut bacteria and the role that this plays in MetS.


Assuntos
Bacteriófagos , Doenças Cardiovasculares , Síndrome Metabólica , Bactérias/genética , Bacteriófagos/genética , Ecossistema , Humanos , Viroma/genética
4.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938760

RESUMO

The infection of a bacterium by a phage starts with attachment to a receptor molecule on the host cell surface by the phage. Since receptor-phage interactions are crucial to successful infections, they are major determinants of phage host range and, by extension, of the broader effects that phages have on bacterial communities. Many receptor molecules, particularly membrane proteins, are difficult to isolate because their stability is supported by their native membrane environments. Styrene maleic acid lipid particles (SMALPs), a recent advance in membrane protein studies, are the result of membrane solubilizations by styrene maleic acid (SMA) copolymer chains. SMALPs thereby allow for isolation of membrane proteins while maintaining their native environment. Here, we explore SMALPs as a tool to isolate and study phage-receptor interactions. We show that SMALPs produced from taxonomically distant bacterial membranes allow for receptor-specific decrease of viable phage counts of several model phages that span the three largest phage families. After characterizing the effects of incubation time and SMALP concentration on the activity of three distinct phages, we present evidence that the interaction between two model phages and SMALPs is specific to bacterial species and the phage receptor molecule. These interactions additionally lead to DNA ejection by nearly all particles at high phage titers. We conclude that SMALPs are a potentially highly useful tool for phage-host interaction studies.IMPORTANCE Bacteriophages (viruses that infect bacteria or phages) impact every microbial community. All phage infections start with the binding of the viral particle to a specific receptor molecule on the host cell surface. Due to its importance in phage infections, this first step is of interest to many phage-related research and applications. However, many phage receptors are difficult to isolate. Styrene maleic acid lipid particles (SMALPs) are a recently developed approach to isolate membrane proteins in their native environment. In this study, we explore SMALPs as a tool to study phage-receptor interactions. We find that different phage species bind to SMALPs, while maintaining specificity to their receptor. We then characterize the time and concentration dependence of phage-SMALP interactions and furthermore show that they lead to genome ejection by the phage. The results presented here show that SMALPs are a useful tool for future studies of phage-receptor interactions.


Assuntos
Bacteriófagos/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Gotículas Lipídicas/química , Maleatos/química , Bactérias/virologia , Proteínas da Membrana Bacteriana Externa , Membrana Celular/fisiologia , Proteínas de Membrana/química , Polímeros/química , Poliestirenos , Solubilidade , Vírion
5.
iScience ; 23(9): 101439, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32823052

RESUMO

An important viromics challenge is associating bacteriophages to hosts. To address this, we developed adsorption sequencing (AdsorpSeq), a readily implementable method to measure phages that are preferentially adsorbed to specific host cell envelopes. AdsorpSeq thus captures the key initial infection cycle step. Phages are added to cell envelopes, adsorbed phages are isolated through gel electrophoresis, after which adsorbed phage DNA is sequenced and compared with the full virome. Here, we show that AdsorpSeq allows for separation of phages based on receptor-adsorbing capabilities. Next, we applied AdsorpSeq to identify phages in a wastewater virome that adsorb to cell envelopes of nine bacteria, including important pathogens. We detected 26 adsorbed phages including common and rare members of the virome, a minority being related to previously characterized phages. We conclude that AdsorpSeq is an effective new tool for rapid characterization of environmental phage adsorption, with a proof-of-principle application to Gram-negative host cell envelopes.

6.
Nat Microbiol ; 4(10): 1727-1736, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31285584

RESUMO

Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.


Assuntos
Bacteriófagos/genética , Coevolução Biológica , Microbioma Gastrointestinal , Animais , Bacteriófagos/classificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/virologia , DNA Viral/genética , Fezes/virologia , Feminino , Variação Genética , Humanos , Masculino , Filogenia , Filogeografia , Primatas/virologia
7.
Trends Microbiol ; 27(1): 51-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30181062

RESUMO

The host range of a bacteriophage is the taxonomic diversity of hosts it can successfully infect. Host range, one of the central traits to understand in phages, is determined by a range of molecular interactions between phage and host throughout the infection cycle. While many well studied model phages seem to exhibit a narrow host range, recent ecological and metagenomics studies indicate that phages may have specificities that range from narrow to broad. There is a growing body of studies on the molecular mechanisms that enable phages to infect multiple hosts. These mechanisms, and their evolution, are of considerable importance to understanding phage ecology and the various clinical, industrial, and biotechnological applications of phage. Here we review knowledge of the molecular mechanisms that determine host range, provide a framework defining broad host range in an evolutionary context, and highlight areas for additional research.


Assuntos
Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Especificidade de Hospedeiro , Bactérias/genética , Bacteriófagos/genética
8.
Nat Rev Microbiol ; 16(12): 760-773, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30104690

RESUMO

Phages differ substantially in the bacterial hosts that they infect. Their host range is determined by the specific structures that they use to target bacterial cells. Tailed phages use a broad range of receptor-binding proteins, such as tail fibres, tail spikes and the central tail spike, to target their cognate bacterial cell surface receptors. Recent technical advances and new structure-function insights have begun to unravel the molecular mechanisms and temporal dynamics that govern these interactions. Here, we review the current understanding of the targeting machinery and mechanisms of tailed phages. These new insights and approaches pave the way for the application of phages in medicine and biotechnology and enable deeper understanding of their ecology and evolution.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Variação Genética , Bactérias/genética , Bacteriófagos/classificação , Bacteriófagos/genética , Especificidade de Hospedeiro , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...